Shark skin-inspired designs that improve aerodynamic performance.
نویسندگان
چکیده
There have been significant efforts recently aimed at improving the aerodynamic performance of aerofoils through the modification of their surfaces. Inspired by the drag-reducing properties of the tooth-like denticles that cover the skin of sharks, we describe here experimental and simulation-based investigations into the aerodynamic effects of novel denticle-inspired designs placed along the suction side of an aerofoil. Through parametric modelling to query a wide range of different designs, we discovered a set of denticle-inspired surface structures that achieve simultaneous drag reduction and lift generation on an aerofoil, resulting in lift-to-drag ratio improvements comparable to the best-reported for traditional low-profile vortex generators and even outperforming these existing designs at low angles of attack with improvements of up to 323%. Such behaviour is enabled by two concurrent mechanisms: (i) a separation bubble in the denticle's wake altering the flow pressure distribution of the aerofoil to enhance suction and (ii) streamwise vortices that replenish momentum loss in the boundary layer due to skin friction. Our findings not only open new avenues for improved aerodynamic design, but also provide new perspective on the role of the complex and potentially multifunctional morphology of shark denticles for increased swimming efficiency.
منابع مشابه
Fluid Drag Reduction with Shark - Skin Riblet Inspired
Inspired by designs found throughout living nature, researchers are reverse engineering the world’s fl ora and fauna to solve technical challenges. Much attention is given to structures and materials since living nature effi ciently uses resources and incorporates ingenious designs to survive. Therefore by using lessons from living nature, bioinspired designs are serving as the basis for many n...
متن کاملAn Experimental Investigation on a Bio-inspired Corrugated Airfoil
An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a streamlined airfoil and a flat plate at the chord Reynolds number of Re= 58,000 ~ 125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle (MAV) designs. In addition to measuring the aerodynamic lift and drag ...
متن کاملAn experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications
An experimental study was conducted to investigate the aerodynamic characteristics of a bioinspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of ReC = 58,000–125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag for...
متن کاملOwl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.
Owls are widely known for silent flight, achieving remarkably low noise gliding and flapping flights owing to their unique wing morphologies, which are normally characterized by leading-edge serrations, trailing-edge fringes and velvet-like surfaces. How these morphological features affect aerodynamic force production and sound suppression or noise reduction, however, is still not well known. H...
متن کاملShark-skin surfaces for fluid-drag reduction in turbulent flow: a review.
The skin of fast-swimming sharks exhibits riblet structures aligned in the direction of flow that are known to reduce skin friction drag in the turbulent-flow regime. Structures have been fabricated for study and application that replicate and improve upon the natural shape of the shark-skin riblets, providing a maximum drag reduction of nearly 10 per cent. Mechanisms of fluid drag in turbulent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 15 139 شماره
صفحات -
تاریخ انتشار 2018